Vote utilisateur: 4 / 5

Etoiles activesEtoiles activesEtoiles activesEtoiles activesEtoiles inactives
 

nombres premiers spheres
Théorème de raréfaction d'Euler (1707-1783)


Théorème

La somme des inverses des nombres premiers tend vers l'infini, (on dit qu'elle diverge).

pP(1p)=12+13+15+17+111+  diverge

Historique

Le mathématicien suisse Euler (1707-1783) démontre ce théorème en 1737.
Le théorème de Legendre (1752-1833) prouve la raréfaction des nombres premiers mais ici Euler indique que cette raréfaction n'est pas très rapide. ([Delah1]p204)

La démonstration de ce théorème d'Euler induit un encadrement de la somme des inverses des nombres premiers inférieurs à n entre ln( ln(n) ) et ln( ln(n) ) + 1.

On montre d’ailleurs que :

pP ; pn1plnln(n+1)lnπ26

 

Sum of reciprocals of primesL'axe des abscisses est en échelle logarithmique

 

 

Articles Connexes